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Asymmetry and direction reversal in fluctuation-induced biased Brownian motion
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The biased movement of a Brownian particle in a periodic potential fluctuating between a flat and a kinked
ratchet state, as first studied by Chauwin, Ajdari, and Pi®ktis examined. The purpose is to study the
physical origin of the frequency-dependent direction reversal of the biased Brownian motion in this system.
We show that the existence of the directional reversal depends not only on the lengths of the projections of the
two ratchet arms on the potential axtee arm-projection asymmetrybut also the overall spatial geometry of
the potential in a period. In particular, we show that the direction reversal can be obtained in this kinked ratchet
model even when the two arm projections are equal. Since this two-state model is the simplest to generate
direction reversal and particles can be separated more efficiently in a fluctuating potential if direction reversal
exists, the results obtained in this study should be useful for future application in particle separation.
[S1063-651%99)08810-9

PACS numbd(s): 05.40.Jc, 87.19.Rr

It has been shown theoretically that a Brownian particleAjdari, and Prost have suggested that DR can be obtained in
can be made to undergo unidirectional movement in a onethe two-state ratchet model shown in Fidallif the long
dimensional asymmetric periodic potential if the “interac- arm of the ratchet i&inked as shown in Fig. (b) [3]. Bier
tion” between the particle and the potential field is made toand Astumian also have found DR in a fluctuating three-state
fluctuate randomly or regularly among a number of stategnodel[4]. These models are potentially very useful because
[1-6]. The fluctuation of the interaction can be producedDR could lead to more efficient fluctuation-induced separa-
either by externally switching the potential among a numbetion of particles[4]. In these models, the arm-projection
of different potential stategl—4] or by changing the inter- asymmetry was assumed to be necessary for the generation
action parametefsuch as the charge, if the potential is elec-0f DR. Recently, we have shown that biased Brownian mo-
tric) on the Brownian particle through a nonequilibrium tion can be obtained for some models without the arm-
chemical cycld5,6]. It has been argued that the motility of Projection asymmetry6]. It is therefore interesting to see
biological motors might be governed by the same mechawhether DR also can be obtained in models without this
nism[7—9]. Recently, this biased Brownian motion has beendsymmetry. In this paper, we show that DR can be produced
pro\/ed experimenta”ilO]_ The same device could be ap- in the kinkedtwo-state model of Chauwin, Ajdari, and Prost
plied to the separation of proteins or particles based on theifo matter whether the value afin Fig. 1(b) is larger than,
sizes, electric charges, etc. equal to, or smaller thal. That is, the arm-projection asym-

To generate biased Brownian motion in a ﬂuctuating pemetry is not necessarily required for this two-state model to
riodic potential, the potential in each period must possess
some sort of asymmetrll—6]. A simple and widely used
asymmetric potential is the ordinamatchet potential, in state 1
which the potential in each spatial period is shaped like a ka
saw-tooth with twounequal straightarms. The potential is T
referred to as having an “arm-projection asymmetry” since

the projections of the two sides of a ratchet on the potential : hﬂ state 2
b

axis are not equdbkee Fig. 1a)]. It is well known that the net a

movement of a Brownian particle in a periodic ratchet po-

tential fluctuating randomly between a flat and a nonflat state g

(the two-state on-off modgls always biased in one direc-

tion, independent of the frequency of the fluctuatiar?].

Recently, the study of direction reversdDR) in

fluctuation-induced biased Brownian motion on asymmetric : :

periodic potentials has attracted considerable attention ~ G "

[3,4,11. Millonas and Dykman discussed the generation of

DR in a stationary periodic potential induced by a Gaussian fiG. 1. (a) Two-state on-off model of a fluctuating periodic

force noise with a nonwhite power spectrfitri]. Chauwin,  potential. The potential is said to have an “arm-projection asym-
metry” when the projections of the two arms of a ratchet onxhe
axis,a andb, are not equal(b) The kinked ratchet model of Chau-

* Author to whom correspondence should be addressed. win, Ajdari, and Prost3].
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generate the DR phenomenon; the asymmetry of the poten-

tial caused by the kink at the potential weHlt x=0) also 002
plays an important role. First we present the calculations
demonstrating DR in this kinked two-state ratchet model and 0.0t
then discuss the physical mechanism underlying the genera-
tion of DR. ufk, o
The mathematical formalism for calculating the transport
flux (or the average velocijyof Brownian particles in a two- -0.01
state on-off model is standafd,5,6]. Briefly, the steady-
state probabilitied p;(x), i=1,2] of finding a particle lo-
cated atx when the fluctuating potential/(x), is in statei
are obtained by solving two coupled linear second-order or- 0.01
dinary differential equations,
P1"(X) —kip1(X) +Kopa(X) =0, (2)
u/kl 0
P2”(X)+V’p2’(x)+V”p2(x)+klpl(x)—kzpz(x)=0,(2)
using the normalization condition that the total probability of
particles in one period is unity: -0.01 : : : :
) -3 2 1 0 1 2 3 4
logqo(k
| 9100+ patxnax-1. ® . el
and periodic boundary conditions for the probability and the 6
flux at the two ends of a period. The transport fluthen is
given by
v, 4
u=-p;—pz=V'p,. (4)
Since Eqs(1) and(2) imply u’ =0, the transport flux will be 2
a constant independent gf For an arbitraryv/(x), Egs.(1)
and (2) can be solved approximately using a “finite differ- 0 . : ( s
ence” method[5,6]. This method requires large computer 3 o 0 1 5 3 4

memory and computing time. On the other hand, for piece-
wise linear periodic potentials, Eq4d) and(2) can be solved
using the eigenvalue-eigenfunction methdd,2]. This )
method can generate more accurate numerical results with F!G- 2. (). Transport fluxes calculated directly from Eds)
less computing time and is used in this stydy]. Before ~2nd(? at different kink height V,) for a=0.5 andk,=0.01. The
presenting the calculation results, we emphasize that the péé‘lue ofVy is indicated by each curve. The curves\gt=0.8 and
rametersV,x,u, and thek, have been made dimensionless .5 are not s.hown in the flgurg, only the positions of thg direction
and are related to their corresponding physical quantitieg9 versal(th_e intercepts are indicated. The dotted curve is W.rl
= e =4 andk;=10. As can be seen, the reverkgls not very sensitive
(signified by a barby V=V/kgT; x=X/L; u=uL/D; k; to the value ok, . (b) The calculated for a=0.48 at different/; .
=k;L?/D whereL is the length of the period of the potential, For V;=0.85 and 0.845, only the intercept is shown in the figure.
D is the diffusion coefficient of the particle, ahgT is the  (c) The direction reversal frequency at which the transport flux
product of the Boltzmann constant and the temperaturechanges sigrithe reversal frequengyas a function o, at differ-
Thus, it is obvious thaa+b=1 [this is the reason why the enta values.k; is 0.01 for the solid curves and 10 for the dotted.
integration in Eq.(3) is from 0 to 1. Furthermore, the di-
mensionless rate constaris and k, are not the same for Study. That is, with any given potentil(x) (characterized
different particles if they have different diffusion coeffi- by the values of, V;, andV,), the transport fluxor the net
cients. This is exactly the reason why particles with differentvelocity of the Brownian particleof the system is calculated
diffusion coefficients can be separated in this sysfdmn and expressed as a functionlgfat fixedk; . In all calcula-
There are many ways to modulate the average frequendjons, Vo was set to 10 and three arm-projection asymmetry
of the fluctuation of the potential in a two-state model. Forparameters were considereca=0.6, 0.5, and 0.48. The
example, one could keep one rate constant in Fig. fixed  calculatedu(k,) curves for a number oV, values atk;
and vary the other or vary both rate constants simulta=0.01 are shown in Figs.(@ and 2b) for a=0.5 and 0.48,
neously. From preliminary calculations we found that therespectively. The curves foa=0.6 are qualitatively very
existence of DR is more related to the valuekgfthank,.  similar to those in Fig. @) and therefore are not shown. The
This may be due to the fact that particles can execute nét, at which the transport flux changes sidk § can be ob-
biased movement only when the potential is in state 2. Thugained from the curves in Figs(& and 2b) and are plotted
only k,-dependent transport fluxes are considered in thisn Fig. 2(c) as a function o/;. The same set of calculations

logo(k™2)
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also were done fok;=10 (a thousandfolq increaseThe t,=—al(—py)=a%(Vo—V,), ty=bl(—pp)=b?Vy,
results are shown as dotted curves in Fig®) 2and Zc).
Several conclusions can be drawn from these calculations:
Direction reversal(DR) can be obtained in this two-state Where the value of has been set to unity for simplicity. Let
kinked ratchet model even when the arm-projection asymmeus assume that the time to stay in state 1 is very léags
try is absent{see Fig. 2a)], in contrast to what was sug- Very smal) so that the particles on theaxis can be consid-
gested by the theory of Chauwin, Ajdari, and Pridt (ii) ered as uniformly distributed a=0 when the potential is
For a large kink heightlargeV,), the flux is mostly positive switched from state 1 to state 2. Then, when=t;) is
and k3 decreases rapidly ag, increasedi.e., k3 is very s_maller than eithet, or t,, the total translocati_omor the
sensitive toV,), irrespective of the value af; (iii) At small ~ distance of movemehbf particles on the two sides of the
V;, the flux is mostly negative and, a%, decreases, the Potential well can be expressed separately as
value ofk3 increases as a function df, if a=0.5 and de- _ 200 (o _ 2
creases ih<0.5[see the arrows in Figs(® and 2b)]. That Sa= ~(pal)*/2= (8= pal) pal = —apal+(pal) 72, (7)
is, as shown in Fig. @), the V,-k% curve at smallV, for _ 2/9_ —_ _ 2
a=0.5 is quite different from that foa<<0.5. In fact, direc- So= (pot) 2= (b +pot) ot bPut=(pot)/2, (8)
tion reversal does not exist for th@<0.5 case ifV; is  where positive means translocation to the right and negative
smaller than a limiting valugjv) There exists a range ™;  to the left. Note that the first term of the expression on the
in which u(k,) contains both positive and negative ampli- right-hand side of the first equal sign in Eqg) or (8) rep-
tudes and the value df; changes slowly a¥, is varied.  resents the average translocation of particles that have moved
This range ofV, is therefore most suitable for particle sepa- to the potential minimungat x=0) in time t, while the sec-
ration; (v) As shown in Fig. £c), almost identicalV,-k3 ond term represents the translocation of the particles still on
curves are obtained when the valuekgfis increased 1000 the slope. For sufficiently smal{=t,), the net translocation
times from 0.01 to 10, showing that the generation of DR isof particles in one spatial period then can be evaluated as
mostly controlled byk,, notk;. )

In the following, we show that the existence of DR at So=SatS=Vit+0O(t) ast—-0, ©)

smallk; as found in the calculations can be predicted usinq’vhere Eq.(5) has been used to eliminatg and py . Thus
. b- ’

an approximate ‘“deterministic” physical theory. For the . .

two-state kinetic system in Fig(d), theaveragetime for the for any nonzerd/y , the net translocation of particles at small

potential to stay in states 1 and 2 are constant and equal f@ IS always positivdtoward the right in Fig. ()] no matter
whethera is larger than, equal to, or smaller thenThen, if

ti=1/k, andt,=1k,, respectively. Thus, in this theory the oo o nqiocation of particles can be proved to be negative
potential is treated approximately as if it were oscillating at larget, (or smallky), the occurrence of DR in this model

regularly between states 1 and 2 with constant times of du-
ration oft; andt,. The distribution of particles on theaxis 1S guarante('ad.. - _ . .
of the potential within each spatial period will be time de- Whent, is _|r_1f|r_utely I_arg_e 4(.2_0)’ all t_he particles will
pendent due to the translocatidar displacementof the reach an equilibrium distribution determined by the poten-

priies. A teady siatair the ysin has undergone Lo, 1 cace h ne rarslocaton o e partcles s cau
large number of oscillations the distribution functions in P

both states 1 and 2 become invariant from one oscillation tépat'al. pe.”‘".‘ betwe_en the finat==) and the .|n|t|al ( .
=() distributions. It is easy to see that for a uniform distri-

the other, but are still time dependent. The net translocatioB tion th ter of &t 0 is located at th idooint
of all particles in one spatial period i3 when the potential lg:t:/(\jgene cek? eraon dmazs m _ls(aoc%)e;Z a L(Stml f(p):))m
_ , o=(a— _

is in state 2 determines the steady-state transport flux of th . o
y P =Cexd —V(X)] denote the equilibrium distribution of par-

system 3]. Thus, to see whether tikg-dependent DR occurs X i . L ra
in the system, one needs only to compare the signs of the nif!eS In one spatial period at largewhere C=1//% exp

steady-state translocation of particles in one potential perioli~ V(¥)]dx is the normalization constant. Then the center of
at large and small,: DR is guaranteed to occur if the signs Mass at large is located at
at these two extremes are different. a
If the movement of an overly damped particle in a poten- m‘”:f xf(x)dx (10)
tial field is treated classically without considering the ther- b
mal fluctuation effect, theelocity of the particle is equal to
—p(X)/y where p(x) is the slope of the potentidlp(x)
=dV(x)/dx] at x and v is the friction coefficient of the
particle. Let us consider the spatial period betwgen—b
andx=a as shown in Fig. (b). The slopes on tha andb Sm=mw—mo=f
sides of the potential are constant and can be expressed as

and the net translocation of particles in the period between
Xx=—h andx=a can be expressed as

a

bxf(x)dx—(a—b)/2. (11

Thus, DR occurs ifs,, is negative. With given values &f;,
pa=(Vo—Vi)/a, pp=—Vo/b. (5 V, anda for the kinked linear ratchet potential in Fig(bl,
the evaluation o5, in Eq. (11) is straightforward. The cal-
Let t, andt, denote the average time for a particle to diffuseculatedS,, at differenta values are plotted as a function of
to the potential minimum at=0 from the potential peaks at V, in Fig. 3. As can be seen from the figui®, is always
x=a andx=—b, respectively. Then, we have negative, independent &f;, whena=0.5. In this case, DR
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FIG. 4. u(k,) evaluated a¥;=3 and 4 using the approximate
theory (the dotted linesare compared with those evaluated exactly

FIG. 3. S, evaluated from Eq(11) for differenta values asa "™~ i
in Fig. 2(a). The values of andk; are 0.5 and 0.01, respectively.

function ofV, . For the model to generate DR, the signSofhas to
be negative.

implying a unidirectional movement of the particle in the

is always present in the system. One must note that thigegativex direction.
conclusion is not affected by the value ®,. When a The approximate deterministic theory can be also applied
<0.5,S, may be negative or positive depending on the val-to simulate semiquantitatively the entire transport curve.
ues ofa andV,. As shown in Fig. 3, whema<0.444,S,is  When the value ok, is constant, the transport flux of the
always positive, independent &f; . In this case, no DR is system,u(k,), can be evaluated approximately agk,)
expected. On the other hand, when 0444<0.5, DR is =S(t)/(t+1/k,), wherek,=1/t andS(t) is the net translo-
possible ifV, is large enough. For example, DR can be ob-cation of particles in a spatial period at timafter the po-
tained for thea=0.48 case iV, is larger than 0.83. This tential is switchedfrom state } to state 2. To evaluatg(t),
explains the limitingV, in the reversal frequency shown in one has to divide the timeinto three domains characterized
Fig. 2(c) for a=0.47 and 0.48, as discussed above. by thet, andt, in Eq. (6): t<t,<t,, t,<t<t,, andt
Thus, based on a simple physical argument, a rule is ob>t,>t, (see[3]). The transport flux calculated witk;
tained for the prediction of the existence of DR for the =0.01 anda=b=0.5 are shown in Fig. 4 fov,=3 and 4.
fluctuation-induced movement of Brownian particles in aAs expected, the theory does produce DR correctly. But, the
two-state periodic potential with kinked ratchets. With anytheoretical and the exact flux curves do not agree quantita-
given kinked ratchefcharacterized by the values af(and tively. The deviations may come from four factors. First, the
thereforeb), V; andV], one simply calculates th®. in Eq.  value ofk; is not equal to zero as assumed in the theory. It is
(11) and examines its sign. If the sign 8f is positive, DR possible that better agreement could be obtainéd it re-
may or may not be present. But, if the signQf is negative, duced. Second, the translocation of particles in state 2 is
DR is definitely present. treated as a “deterministic” dynamic process in the theory.
The finding that DR can be obtained in this model evenThat is, only the downhill translocation of particles is con-
whena=Db implies that the “arm-projection” asymmetry is sidered. As a result, particles are not allowed to jump from
not a necessary condition for the kinked ratchet model obne spatial period to the other. In a “stochastic” treatment
Chauwinet al. to generate DR. Chauwin, Ajdari, and Prost (the exact solution up-hill translocations and jumping over
did not reach the same conclusion, because they failed taills are allowed. How this factor contributes to the deviation
take into account the net translocation caused by the distris not known. Third, the particles that have translocated to
bution of particles after they reach the bottom of the potenthe bottom of the potential well may not reach an equilib-
tial well. As will be shown elsewhere, DR also can be gen-rium distribution as assumed in the theory. In general, an
erated for this two-state model even when the kink in Fig.equilibrium distribution is reached only at long tinter at
1(b) is not vertical, but tilted. smallk,). This may be the reason why deviations seem to be
The above physical theory can also be used to explaismaller at smalk,, as shown in Fig. 4. Fourth, substituting
why the particle movement is unidirectionaio direction  a randomly fluctuating potential with a regularly oscillating
reversal in the ordinary(nonkinked ratchet potential in Fig. one may also contribute to the deviation.
1(a) as found before i1,2]. SinceV;=0 in that case, the In conclusion, we have shown that the direction of the
net translocation at smal{ =t,) can be obtained from Egs. biased movement of Brownian particles in the two-state
(7) and(8) asSy=3(Vot/ab)? (b—a). Thus, wherb>a (or  model of Chauwin, Ajdari, and Prost with kinked ratchet
a<0.5), Sy is positive. From Fig. 3S, at V;=0 is also  potentials can be easily changed by changing the frequency
positive in this case. As a result, there is no DR and thef the fluctuation, irrespective of the existence of the arm-
biased movement is always in the positivdirection. Simi-  projection asymmetry in the potential. The existence of a
larly, whena>b (a>0.5), bothS, and S., are negative, kink at the trough of the potentidht x=0) is necessarily
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required for this frequency-dependent direction reversal. Thé designing devices for particle separation based on poten-
existenceof direction reversal in this model can be predictedtial fluctuation.

by a simple “deterministic” physical theory, although the )

theory may not be able to reproduce quantitatively the entire We are grateful to Dr. Greg Smith for many valuable

flux curve. The results obtained in this study should be usefufliscussions.
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